
Subscriber access provided by American Chemical Society

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155
Sixteenth Street N.W., Washington, DC 20036

Article

Ring Systems in Mutagenicity Databases
Richard Kho, Jason A. Hodges, Mark R. Hansen, and Hugo O. Villar

J. Med. Chem., 2005, 48 (21), 6671-6678• DOI: 10.1021/jm050564j • Publication Date (Web): 21 September 2005

Downloaded from http://pubs.acs.org on March 29, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Links to the 2 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/jm050564j


Ring Systems in Mutagenicity Databases

Richard Kho,* Jason A. Hodges, Mark R. Hansen, and Hugo O. Villar

Altoris, Inc., 11575 Sorrento Valley Road, Suite 214, San Diego, California 92121

Received June 15, 2005

The distribution of ring systems in public mutagenicity databases is analyzed. An automated
enumeration of substructures permits determination of the occurrence of different scaffolds in
data sets. The counts are used to perform population analysis via proportions and odds ratios
of mutagenic compounds. Pairwise calculations of odds ratios between scaffolds allow
comparison of ring systems for isostere replacement studies. These findings are presented in
tables that readily show which scaffold is likely to occur in mutagenic compounds. Also, rings
identified in public domain mutagenicity data sets are compared to rings in drugs data sets;
unfortunately, public mutagenicity data sets do not reflect the types of scaffolds in drugs and
those typically used in medicinal chemistry. The findings bring into question the utility of
predictive models that were derived from public domain data sets. The automated ring
identification and statistical approaches used here can be applied to other pharmacological
properties to yield information about chemical scaffolds.

Introduction

As a public health concern, the early detection of
mutagens in the environment and the food supply chain
is critical because industrial pollutants, pesticides, and
certain toxicants can have detrimental effects.1 Regula-
tory agencies routinely monitor for mutagens and
toxicants to protect the public from potentially harmful
chemicals.2 In drug discovery, the identification of
potential mutagens early in the discovery process is also
critical because mutagenicity would constitute an un-
desirable toxicological profile leading to potentially
harmful effects. Positive outcomes in mutagenicity tests
would likely raise concerns in regulatory authorities and
cause the discontinuation of further work in the chemi-
cal class.

The Ames test3-5 has been a favored short-term in
vitro assay aimed at detecting the genetic damage
caused by chemicals and as a predictor of carcinogenic-
ity. Despite all its limitations, the positive predictive
power of the Ames test for carcinogenicity in rodents
ranges from 77% to 90%.6 In practice, the Ames test is
not the final end-point for determining carcinogenicity
because it is typically followed by a battery of in vitro
and in vivo genotoxicity assays.7,8 Nevertheless, the
Ames test has become an important tool for weighing
whether a chemical series should be advanced in the
preclinical track. Its relative simplicity compared to
other mutagenicity or carcinogenicity determinations
makes it a good fit in current drug discovery paradigms,
which are mostly concerned with the evaluation of a
large number of chemicals in the early stages of the
project.9 Quick and simple assays have gained relevance
in a drug discovery workflow characterized by a myriad
of potential chemicals from which few are selected for
further development.

The Ames protocol is based on inducing growth in
genetically altered strains of the bacterium Salmonella

typhimurium that lack the capability of synthesizing
histidine and need external sources of this amino acid
for growth.3 When the bacteria are exposed to certain
mutagens, the Salmonella can undergo mutations that
restore their ability to produce histidine, therefore
growing without histidine in the medium. Because the
mutant bacteria revert to their original character, these
bacteria are sometimes referred to as revertants. Sev-
eral strains of Salmonella are used when evaluating the
mutagenicity of compounds because they reflect differ-
ent mechanisms by which revertants become mutated.
The TA-98 and TA-100 strains are the most commonly
used, but this panel of strains is not considered to be
fully satisfactory, and current guidelines suggest includ-
ing the TA-1535 and TA-1537 strains as well.10,11 The
use of multiple strains to check the mutagenic character
of chemicals is done to increase the sensitivity of the
assays as well as its range of applicability.

Many chemicals are not inherently mutagenic but are
transformed into mutagens by metabolic activation. The
practitioners of the Ames test utilize a metabolic activa-
tion mixture to mimic this aspect of the mutagenic
potential of a chemical due to in vivo metabolism. Thus,
each chemical is tested in two formats per strain, with
and without metabolic activation. On the basis of the
four aforementioned strains, a total of eight determina-
tions are recommended to test the mutagenic character
of a chemical.

As with every other aspect of toxicology, in silico
prediction12 or derivation of simple rules that may bias
compound selection against mutagenic chemicals has
traditionally been and continue to be of great practical
interest.12-17 In drug discovery, such rules could help
to better define the likelihood of success of a chemical.
The methods for predicting mutagenicity and observa-
tions made on the properties of mutagenic compounds
rely on the modeling of existing data sets. Because those
data sets were compiled over long periods of time for
disparate reasons, assay conditions are variable and no
motif exists for how the number and variety of chemicals
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were selected for study. The lack of homogeneous data
and the wide-ranging nature of the chemicals could be
problematic when attempting to derive general conclu-
sions or model the data. For that reason, we have two
goals in this study. First, we want to summarize the
information available in Ames test databases by analyz-
ing the types of ring systems that are present in the
available data sets and studying their frequency in
Ames positive and negative compounds. The study of
fragments prevalent in mutagenic compounds has at-
tracted considerable attention over the years and has
been at the center of the development of techniques to
predict potential mutagens. Historically, methods such
as CASE and MULTICASE have pioneered the knowl-
edge-based approach for predictive purposes.15,18 Our
emphasis is not on predictive algorithms19,20 but instead
on organizing the currently available data sets in terms
that can be readily useful to chemists. We identified
simple scaffolds present in the data sets and organized
them in a hierarchy according to their complexity. The
parent and child relationships that exist in the set were
analyzed, and changes in mutagenic character according
to scaffold complexity were observed.

Our second goal is to evaluate the relevance of the
currently available mutagenicity databases for work in
drug design. The available literature suggests that the
most common algorithms to predict mutagenicity do not
perform particularly well in the case of drugs.17 We
decided to investigate whether the problems are due to
the types of structures that are being used to train the
available algorithms. To that end, we compared the
frequency and distribution of ring systems in a small
data set of marketed drugs to the chemicals in the
largest toxicological database. In other words, we wanted
to determine if the chemicals evaluated for mutagenicity
are representative of the types of chemical substructures
that are found in drugs. As before, we employed
fragmentation of chemicals according to the ring sys-
tems they contain and organized the results by com-
plexity. We then compared the scaffolds present in the
mutagenicity databases and the drugs databases. Our
results strongly suggest that the chemical diversity of
compounds evaluated in mutagenicity assays is signifi-
cantly less than the diversity of marketed drugs. For
that reason, methods based on public domain data may
be insufficient to derive conclusions that would be
valuable for drug design. Since larger private data sets
that better represent druglike compounds likely exist,
we describe the methods and statistical approaches that
can be used to analyze them.

Methods

Data Sets. The CCRIS (Chemical Carcinogenesis
Research Information System) database was used for
this study following methods detailed in prior stud-
ies.19,20 All results for the four main test strains were
retrieved (TA-98, TA-100, TA-1535, and TA-1537),
including those with or without metabolic activation
using the rat liver S9 mix protocol. The classification
of compounds as Ames positive or negative is not
straightforward because there are ambiguities in the
data reported through time by different laboratories. To
improve accuracy, only molecules that had a consistent
outcome in at least 80% of the studies were taken into

consideration. The CCRIS database lacks structural
data for the compounds; we obtained structural infor-
mation by merging the CCRIS data with the structures
contained in other databases, using the CAS number
as a common reference.19 This step reduced the number
of compounds available for study, since we could not
identify structures or CAS numbers for all of the
compounds in the CCRIS data set. The final data set
used for this study contained 6039 compounds with at
least one Ames test result and a corresponding chemical
structure. The data set can be downloaded from our Web
site (http://www.altoris.com).

For comparison purposes, we compiled in-house a set
of 3882 commercial drugs. Among others, it contains
compounds found in the “To Market, To Market” chap-
ters of the Annual Reports in Medicinal Chemistry.21

The data set contains information on a wide assortment
of different pharmacological classes, therapeutic acitiv-
ites, and routes of delivery.

Computational Method for Scaffold Identifica-
tion. The data sets were analyzed using our program,
SARvisonPlus 1.5 (http://www.chemapps.com, Chem-
Apps, San Diego, CA). The program carries out an
enumeration of molecular fragments frequently found
in the database. The scaffold perception algorithm does
not resort to the use of predefined lists; instead, it
carries out an exhaustive comparison of all molecules.22

SARvision applies a series of knowledge-based rules to
reduce the total number of scaffolds considered to those
that are chemically meaningful, which in turn increases
the efficiency of the algorithm. Among the rules, only
entire ring structures are counted as scaffolds rather
than ring or functional group fragments, and differences
in simple alkyl substitutions are insufficient to define
a new scaffold. These two simple restrictions greatly
reduce the total number of scaffolds and consequently
speed up the analysis but without affecting the results.
The rules have the advantage of defining substructures
that are consistent with chemical intuition and simpli-
fying the subsequent analysis of the data.

One of the major challenges when substructural
analysis is carried out is the organization and presenta-
tion of the different scaffolds or fragments found.
Specifically, the representation of relationships among
them can be cumbersome. SARvision utilizes a hierar-
chical organization of the molecular fragments and
presents the hierarchy as a tree, allowing facile iden-
tification of the relationships between scaffolds. In this
respect, the program is similar to another recently
described application,23 as it organizes molecular frag-
ments in a hierarchy according to complexity. The
simplest structures are at the highest level of the tree,
and other, more complex superstructures are placed as
leaves in the tree, resulting in easy-to-navigate parent
and child relationships. Since the program requires
nontrivial additions to differentiate among scaffolds,
branching points in the tree are only found when
nontrivial variants of the parent scaffold exist. More-
over, many scaffolds appear only in a small number of
molecules. Throughout this study, we report on scaffolds
that occur in a minimum of five molecules. The program
provides a count of the number of occurrences of a
particular scaffold at a tree node or leaf.
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Statistical Analysis of the Proportions. For the
analysis of the distribution of scaffolds, we resorted to
some simple tools of population and categorical data
analysis: analysis of proportions and odds ratio. The
proportion of Ames negative compounds is defined as

where nneg is the number of compounds found to be
Ames negative in all of the assays for all strains and N
is the total number of observations made. Note that the
proportion is a value between 0 and 1, inclusive. The
standard error of the proportion at 5% significance level
is calculated as

The 95% confidence interval can then be determined for
the proportion using the SE. If a proportion of 0.5 is
contained in the confidence interval, then the same
proportion of positive or negative compounds can be
expected for that scaffold.

The odds ratio (OR), commonly used in epidemiologi-
cal and biomedical research, is a statistical measure
useful for describing the relationship between two
populations.24,25 As its name indicates, the odds ratio
is simply the ratio of the odds of two events. In this
analysis, the odds of observing a negative outcome refers
to the number of negative outcomes (nneg) divided by
number of non-negative outcomes. The odds ratio be-
tween two cohorts of compounds (OR1,2) can be calcu-
lated from

where N is the total number of observations. The 95%
confidence interval for the OR can be calculated at the
5% significance level using

The antilogarithms provide the confidence intervals.
An OR of unity would indicate equal odds of negative

or positive outcomes. However, the OR is not a sym-
metric function around OR ) 1, which makes the
assimilation of results less immediate. For this reason,
we adopted the use of the decimal logarithm (log to the
base 10) of the odds ratio. In this way, the scale becomes
symmetric with respect to the equal odds (log OR ) 0);
a positive log OR value indicates greater odds of having
an Ames negative outcome, and a negative log OR value
indicates greater odds of having an Ames positive
outcome (see results; for example, use of log OR). For
the statistical analysis, compounds that showed a
positive outcome in any of the eight Ames tests were
counted as positive and compounds that had no positive
results reported were counted as negative.

Results and Discussion
Population Analysis for Simple Scaffolds. The

program used to identify scaffolds organizes the results

hierarchically according to parent and child relation-
ships. The highest level of the tree structure is composed
mostly of simple heterocycles. Figure 1 shows some of
these substructures and the log OR values for Ames
negative versus Ames positive results.

If the value of the log OR is positive, the odds of the
scaffolds being in compounds reported to be Ames
negative is larger than that of the scaffold being part
of Ames positive compounds. That is, positive values are
associated with scaffolds that are less likely to be found
in mutagenic compounds. For example, thiophene has
a negative log OR (-1.014); therefore, the scaffold is
more likely to be found in compounds that fail the Ames
test, and the value reveals that the odds of this scaffold
being found in an Ames positive compound are greater
than 10 to 1. At the other end of the spectrum, no
compound containing piperazine as a scaffold was found
to be Ames positive. This is the only case were a parent
scaffold shows no Ames positive result. Compounds
containing piperidine or morpholine are also unlikely
to be mutagenic, having log OR values of 1.678 or 1.322,
respectively. This is equivalent to saying that the odds
of finding these scaffolds in Ames negative compounds
are 48 to 1 or 21 to 1, respectively. Some heterocycles
such as imidazolidine and pyrrole are found with
comparable odds in active and inactive compounds. A
point to keep in mind is that these results are not
predictive, but simply summarize the observations in
the data set analyzed, the CCRIS database. If the data
set contains biases, then the analysis will also reflect
those biases.

A common problem in medicinal chemistry is that of
substitutions and replacements using bioisosteres. The
replacement of a given functional group or scaffold is a
common practice to improve the activity or to change
the toxicological, physicochemical, or pharmacokinetic
properties of a compound. Pairwise comparisons of
scaffolds can consequently have more practical use than
comparing the odds of positive versus negative com-
pounds in a population as in Figure 1. For that purpose,

p )
nneg

N

SE ) (1.96x(1 - p)p
N

OR1,2 )
[ nneg

N - nneg
]

1

[ nneg

N - nneg
]

2

ln OR (

x[1/nneg + 1/(N - nneg)]1 + [1/nneg + 1/(N - nneg)]2

Figure 1. Simple scaffolds identified in mutagenicity data-
bases. Scaffolds are colored according to a log OR gradient,
where the log OR (log10 odds ratio) was calculated for Ames
negative versus Ames positive counts. Blue scaffolds have most
Ames negative character; black scaffolds contain equal odds
of being in Ames negative or Ames positive compounds; and
red scaffolds have higher odds of being in Ames positive
compounds. The actual log OR values are shown for each
scaffold. A large positive number (blue scaffold) indicates the
most Ames negative character. Scaffolds are arranged by
increasing complexity (from upper left).
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an interesting way to analyze the data is to look at the
odds ratio of Ames outcomes for pairs of scaffolds. The
odds that a compound containing a given scaffold shows
no Ames positive result for any strain compared to
another scaffold is directly applicable to the problem of
identifying more suitable bioisosteres.

A two-way entry table (Figures 2 and 3 can be built
using such pairwise comparisons of scaffolds. The
log OR for any two given scaffolds can be calculated, and
a preference in terms of mutagenic potential can be

determined for each scaffold relative to the other. If the
confidence interval does not contain the equal odds
value (log OR ) 0), then the log OR is statistically
significant (p e 0.05) and one of the scaffolds is
preferable over the other, with all other considerations
being equal. The preference is indicated in Figures 2
and 3 by an arrow that points to the scaffolds that have
favorable odds. Figure 2 shows pairs of simple, one-ring
scaffolds, while Figure 3 compares pairs of bicyclic
scaffolds. If the confidence interval for the log OR

Figure 2. Pairwise comparisons of individual monocyclic ring scaffolds for log odds ratio of Ames negative to Ames positive
compounds. If the log OR confidence interval does not include the equal odds event (log OR ) 0), then an arrow points to the
scaffold of the pair with higher odds of being found in Ames negative compounds; that is, the scaffold that should be preferred in
terms of decreased mutagenic potential.
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contains zero, then there is no reason to prefer one of
the scaffolds over the other. It should be pointed out
that if larger numbers of observations were available
for statistical analysis, the confidence intervals would
be narrower and fewer comparisons would include
log OR ) 0 unless there was truly an equal odds of the
scaffold occurring in Ames positive and Ames negative
compounds.

Some results can be quickly visualized using Figures
2 and 3. For example, any other ring should be preferred
over aziridine (Figure 2, first datum row), since the
log OR between it and all other scaffolds are negative
values. Epoxides (Figure 2, second data row) are also
quite commonly found in mutagenic compounds, but the
odds of finding compounds that are mutagenic that
contain it are less than the odds for compounds contain-
ing either thiophene (Figure 2, eighth data row) or
aziridine. Therefore, in the absence of other discrimi-
nating features, epoxides should be preferred over
aziridinyl or thiophenyl substituents. In the case of the
bicyclic scaffolds (Figure 3), the data sets are sparser
and, consequently, the confidence intervals are wider.
There is less chance that the data will show preference
for one scaffold over another. However, the benzoxazole
(Figure 3, last data row) and benzothiazole (Figure 3,
second to last data row) rings are less likely to be part
of mutagenic compounds.

A comparison of the properties of pairs of scaffolds
as shown in Figures 2 and 3 has clear applications for
the replacement of functional groups or scaffolds in
medicinal chemistry research. They are simple to in-
terpret, and the knowledge can be readily applied. The
results are not necessarily predictive, but they sum-

marize the properties of compounds in biologically
meaningful ways. While the property studied here is the
Ames mutagenicity test, similar tables can be con-
structed for other properties, providing an alternative
way to look at chemical and biological data simulta-
neously.

Increasing Complexity of Scaffolds. As the com-
plexity of the scaffolds increases, some correlations can
be observed between the size of the scaffolds and the
Ames outcome. Figure 4 shows a few examples of parent
and child relationships where expanding upon the
parent scaffold changes the proportions of Ames positive
compounds. The analysis is performed using proportions
for simplicity. The proportions indicate the ratio of Ames
negative compounds relative to the entire data set and
are presented as a percentage: a proportion of 50
indicates that the scaffold is found equally in Ames
negative or positive compounds, while a proportion
greater than 50 indicates that the scaffold occurs in
more Ames negative compounds and vice versa. The
interval of the confidence will depend on the number of
observations accumulated.

The proportion of Ames negative compounds for each
scaffold could change significantly depending on the
substituents and the resulting topology of the ring
system. For example, going from a pyridine (Figure 4a)
to a quinoline (first child) changes the confidence
interval of the proportion of Ames negative compounds
from 34% to 43% to a range of 27-38%, indicating that
the quinoline scaffold is more likely to be found in Ames
positive compounds than the parent pyridine. At one
lower level on the tree is acradine, with a proportion in
the range of 7-20%, meaning that the addition of

Figure 3. Pairwise comparisons of individual bicyclic ring scaffolds for log odds ratio of Ames negative to Ames positive compounds.
If the log OR confidence interval does not include the equal odds event (log OR ) 0), then an arrow points to the scaffold of the
pair with higher odds of being found in Ames negative compounds; that is, the scaffold that should be preferred in terms of
decreased mutagenic potential.
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another benzene substituent seems to increase the
proportion of Ames positive compounds in the set.

In other instances, the extension of a parent scaffold
can lead to more complex scaffolds that do not meaning-
fully change the proportion of Ames negative com-
pounds. The piperazine ring (Figure 4b), for example,
has an N-phenylpiperazine as a child leaf that does not
significantly change the Ames outcome. More interest-
ing is the tetrahydronaphthalene branch (Figure 4c,
first child), where depending on the substituents, a more
Ames positive (6-33%) or more Ames negative (100%)
scaffold results. As a general rule, increasing aroma-
ticity or extension of the conjugation of chemicals
increases the odds that the compounds containing those
scaffolds will become mutagenic. Conversely, an in-
crease in the aliphatic character of the ring results in a
decrease in the mutagenic potential of the compounds.
Overall, except for those simple trends, the relationships
between larger scaffolds and the substructures they
contain do not appear to have strong correlations to
Ames test results.

Relevance of the Substructure Set in Drug
Design. The above results summarize the observations
in the CCRIS data sets. Because this database was not
compiled for drug discovery purposes, its relevance to
that end is unclear. Indeed, most studies in the past

have relied on the available data sets including the
CCRIS without addressing the question of the relevance
of the data set, particularly when the results will be
applied to guide drug discovery. The applicability of the
CCRIS database can be evaluated by comparing the
substructures present in it to the types of substructures
used in drug discovery work. For that purpose, we
compiled a set of 3882 commercial drugs and compounds
that underwent clinical trials and applied the same
algorithms used in the fragmentation of the CCRIS data
set.

The drugs compilation resulted in 750 ring systems
represented by at least five molecules. The Ames data
set contained only 427 ring systems. This result in itself
is revealing because it shows that a smaller set of
molecules (drug data set) contains a much larger
number of ring systems. The two sets only have 199 ring
systems in common, which is only a fraction of the rings
identified in drugs. Figure 5 shows examples of scaffolds
found in the drugs database but not in the Ames set.
The reciprocal is less significant in our case given the
small size of drug collection used. An interesting point
to note is that natural products such as opiates and
taxanes provide a large number of ring substructures.
The presence of complex natural products in drugs
accounts for the large number of rings found in the

Figure 4. Examples of parent and child relationships in mutagenicity databases. Compounds where the proportion of Ames
negative to Ames positive counts is high are colored blue. Black scaffolds represent equal proportions, and red scaffolds represent
higher proportions of Ames positive outcome. Numbers indicate the confidence interval of proportions of each scaffold: (a) pyridine,
(b) piperazine, (c) hexanaphthylene, (d) pyrroline, and (e) imidazole branches of the tree.
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drugs compilation. The CCRIS data set also has natural
products, including some opiates, but in smaller num-
bers. Since we are restricting the number of rings
analyzed by requiring that they be present in at least
five molecules in the set, the scaffolds from natural
products are less prominent in the CCRIS data set.

Conclusions

Our aim was to summarize the information available
in the CCRIS database, focusing on the ring systems
present. Other prior studies have focused on the global
properties of the molecules and on the influence of
simple functional groups. Analysis of the distribution
of ring systems in the CCRIS database shows that some
scaffolds have lower odds of being part of mutagenic
compounds. In particular, aliphatic rings are less likely
to be part of mutagenic compounds, which agrees with
previous studies.

The study of scaffold distributions using SARvision
software provides a direct method for summarizing
results in large data sets, which have become the norm
in the early stages of drug discovery. In the past, the
study of the distribution of substructures was limited
to analysis of proportions and frequencies. Population
analysis provides the tools necessary to more thoroughly
exploit the information in fragment data sets. The study
was enabled by progress made in scaffold detection
algorithms, where exhaustive enumeration of scaffolds
was combined with some simple knowledge-based rules
to work only with complete scaffolds that are sufficiently
different from others in the set. Previously, the large
number of scaffolds would have made the analysis and
the presentation of results impractical. The use of
scaffold rules makes the process feasible because it
reduces the total number of scaffolds to be analyzed,
making the computational requirements manageable.

In addition, statistical approaches to analyze categori-
cal data that have not been exploited in chemoinfor-
matics work were illustrated. The use of odds ratios and
proportions for population analysis of chemical sub-
structures is promising. Population-based studies are
not as widely used in chemoinformatics or for derivation
of structure-activity relationships, but we show that
these statistics can provide powerful alternative means
to analyze chemical-biological data. Odds ratios al-
lowed the pairwise comparison of rings in the data set,
as well as the odds that the molecules containing the
scaffold are mutagenic. In particular, the pairwise odds

ratios can be valuable when searching for replacement
groups and their use can be extended to other sets of
data beyond mutagenicity. Population analysis goes
beyond the conventional frequency studies for functional
groups and can be a very powerful way to summarize
the data. The approach outlined to summarize large
data sets and create simple tables is immediately
applicable to medicinal chemistry work.

Our analysis also reveals that the distribution of
scaffolds in a small set of drugs is different from the
fragments identified in the CCRIS data set because
there is only a limited overlap in the rings present in
both data sets. These results may account for the lack
of sensitivity shown by currently available methods in
the identification of mutagenic pharmaceuticals. The
result brings into question the practice of using public
domain data sets to derive predictive models without
examining their relevance for drug design. It may be
necessary to construct such data sets more carefully in
such a way to represent the greater diversity of types
of scaffolds found in drug data sets. Ideally, the fre-
quency and distribution of the different scaffolds should
also mimic what is found in drug and druglike molecules
used in medicinal chemistry research so that improved
predictive models can be developed.
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